From trees to networks and back
نویسنده
چکیده
The evolutionary history of a set of species is commonly represented by a phylogenetic tree. Often, however, the data contain conflicting signals, which can be better represented by a more general structure, namely a phylogenetic network. Such networks allow the display of several alternative evolutionary scenarios simultaneously but this can come at the price of complex visual representations. Using so-called circular split networks reduces this complexity, because this type of network can always be visualized in the plane without any crossing edges. These circular split networks form the core of this thesis. We construct them, use them as a search space for minimum evolution trees and explore their properties. More specifically, we present a new method, called SuperQ, to construct a circular split network summarising a collection of phylogenetic trees that have overlapping leaf sets. Then, we explore the set of phylogenetic trees associated with a fixed circular split network, in particular using it as a search space for optimal trees. This set represents just a tiny fraction of the space of all phylogenetic trees, but we still find trees within it that compare quite favourably with those obtained by a leading heuristic, which uses tree edit operations for searching the whole tree space. In the last part, we advance our understanding of the set of phylogenetic trees associated with a circular split network. Specifically, we investigate the size of the so-called circular tree neighbourhood for the three tree edit operations, tree bisection and reconnection (tbr), subtree prune and regraft (spr) and nearest neighbour interchange (nni).
منابع مشابه
پیش یابی ارتفاع موج شاخص در خلیج فارس با استفاده از شبکه های عصبی مصنوعی و مقایسه آن با درخت های تصمیم رگرسیونی
Prediction of wave height is of great importance in marine and coastal engineering. In this study, the performances of artificial neural networks (feed forward with back propagation algorithm) for online significant wave heights prediction, in Persian Gulf, were investigated. The data set used in this study comprises wave and wind data gathered from shallow water location in Persian Gulf. Curre...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملMulticast computer network routing using genetic algorithm and ant colony
Due to the growth and development of computer networks, the importance of the routing topic has been increased. The importance of the use of multicast networks is not negligible nowadays. Many of multimedia programs need to use a communication link to send a packet from a sender to several receivers. To support such programs, there is a need to make an optimal multicast tree to indicate the opt...
متن کاملPrediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کاملInvestigation on the Amount of Mortality of Iranian Oak Trees (Quercus brantii Lindi) using Satellite Imagery (Case study: Dashtebarm forests of Fars Province)
In recent years, oak trees in the Zagros forests have suffered a lot of fatalities for unclear reasons. Determining the rate and severity of forest crown density changes is important for the investigation and management of these forests. This research was carried out with the aim of determining the amount of crown cover changes in the forest area of Dashtebarm in Fars province under the influen...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کامل